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Quantum amplification of mechanical
oscillator motion
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D. Leibfried1, D. H. Slichter1, D. T. C. Allcock1,2,3

Detection of the weakest forces in nature is aided by increasingly sensitive
measurements of the motion of mechanical oscillators. However, the attainable
knowledge of an oscillator’s motion is limited by quantum fluctuations that exist even
if the oscillator is in its lowest possible energy state. We demonstrate a technique
for amplifying coherent displacements of a mechanical oscillator with initial magnitudes
well below these zero-point fluctuations.When applying two orthogonal squeezing
interactions, one before and one after a small displacement, the displacement is
amplified, ideally with no added quantum noise.We implemented this protocol with
a trapped-ion mechanical oscillator and determined an increase by a factor of
up to 7.3 (±0.3) in sensitivity to small displacements.

M
echanical oscillators are essential com-
ponents in an increasing variety of pre-
cision sensing applications, including
gravitational wave detection (1), atomic
force microscopy (2), cavity optome-

chanics (3), and measurement of weak electric
fields (4). Quantum mechanically, any harmonic
oscillator can be described by a pair of noncom-
muting observables; for a mechanical oscillator,
these are typically position and momentum. The
precision of measurement of these observables
is limited by unavoidable quantum fluctuations
that are present even if the oscillator is in its
ground state. Using the method of “squeezing,”
these zero-point fluctuations can be manipu-
lated while preserving their product as dictated
by the Heisenberg uncertainty relation. This
squeezing allows for improved measurement
precision for one observable at the expense of
increased fluctuations in the other (5).
Although squeezed states have been created in

a variety of physical systems, including electro-
magnetic fields (6), spin systems (7),micromechan-
ical oscillators (8–10), and the motional modes
of single trapped ions (11, 12), exploiting squeezing
for enhanced metrology has been challenging.
In particular, noise added during the detection
process will limit the metrological enhancement
unless it is smaller than the squeezed noise. The
requirement of low-noise detection can be over-
come by increasing the magnitude of the signal
to be measured. In optical interferometry (13)
and in spin systems (14), it has been shown that
reversal of squeezing interactions can magnify

small phase shifts, thereby relaxing detection
requirements (15). Photon field displacements
in microwave cavities have also been amplified
using similar phase-sensitive amplification schemes
(16, 17). However, in mechanical oscillator sys-
tems, technical challenges in implementing re-
versible squeezing interactions have prevented
prior use of such methods.
We present a protocol, based on reversible

squeezing, for ideally noiseless phase-sensitive
amplification (5) of mechanical oscillator dis-
placements. This amplification method (Fig. 1)
is applicable to any harmonic oscillator where
reversible squeezing can be implemented faster
than system decoherence. By first squeezing the
motional ground state, quantum fluctuations
along a particular phase space quadrature are
suppressed. A small initial displacement ai (to
be amplified) is then applied along the squeezed
axis. At this stage, although the signal-to-noise
ratio (SNR) for measuring ai has been improved
by squeezing, resolution below the zero-point
fluctuations would require a detection method
with yet lower noise. Finally, by reversing the
squeezing interaction, the oscillator returns to

a minimum-uncertainty coherent state with a
larger amplitude af = Gai, where G is the gain.
Ideally, this process adds no noise in either quad-
rature. For an oscillator described using crea-
tion and annihilation operators â† and â , the
amplification is given by the identity

D̂ðafÞ ¼ Ŝ†ðxÞD̂ðaiÞŜðxÞ ð1Þ

(18), where D̂ðaÞ ¼ expðaâ† � a�âÞ is the displace-
ment operator, and ŜðxÞ ¼ exp½ðx�â2 � xâ†2Þ=2�
is the squeezing operator with complex squeezing
parameter x(r, q) = r exp(iq). For arbitrary orienta-
tions of the displacement ai with respect to the initial
squeezing axis, af = ai cosh(r) +a�i exp(iq) sinh(r).
Maximumamplification is achieved if thedisplace-
ment is along the squeezed axis where arg(ai) =
q/2, giving G = exp(r).
We demonstrate this technique using a single

trapped 25Mg+ ion as the mechanical oscillator
(19). The ion is held ~30 mmabove a linear surface-
electrode radio-frequency trap (20, 21), which
is cryogenically cooled to 18 K. Experiments are
performed on a radial motional mode of the ion
with frequency wr ≈ 2p × 6.3 MHz, energy eigen-
states denoted by |ni, and zero-point wave func-
tion extent of ~5.7 nm (19). To analyze themotional
state, we use qubit states |↓i ≡ |F = 3,mF = 1i and
|↑i ≡ |F = 2, mF = 1i within the 2S1/2 electronic
ground-state hyperfine manifold, where F is the
total angularmomentum andmF is its projection
along the direction of the quantization magnetic
field of approximately 21.3 mT. The qubit transi-
tion frequency w0 ≈ 2p × 1.686 GHz is first-order
insensitive to magnetic field fluctuations, giving
a qubit coherence time longer than 200 ms (21).
The qubit state can be manipulated with reso-
nant microwave carrier pulses. In each experi-
ment, the ion is initialized in the electronic and
motional ground state |↓i|0i with optical pump-
ing, resolved-sideband laser cooling (22), and
microwave pulses. Qubit readout is accomplished
by applying a laser resonantwith the 2S1/2↔

2P3/2
cycling transition and detecting state-dependent
ion fluorescence. We analyze the motional state
of the ion by applying sideband interactions to
map it onto the qubit states (11, 12). Applying a
sideband interaction for various durations re-
sults in qubit Rabi oscillations with multiple fre-
quency components whose amplitudes depend
on the Fock state populations.We generate these
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Fig. 1. Conceptual illustration of the amplification protocol. Each panel shows a Wigner
function phase space distribution (not to scale) in a frame rotating at the oscillator frequency.
A displacement ai of an initially squeezed ground state is amplified by subsequent reversed
squeezing (“anti-squeezing”), resulting in a final coherent state with amplitude Gai with
no added noise. Dashed red circles indicate the characteristic extent of the initial
ground-state fluctuations.
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interactions using oscillating magnetic field grad-
ients (21). The blue sideband (BSB) interaction
induces transitions between the states |↓i|ni and
|↑i|n + 1i with Rabi frequencies proportional toffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
. The red sideband (RSB) interaction drives

transitions between |↓i|ni and |↑i|n – 1i with Rabi
frequencies proportional to

ffiffiffi
n

p
and will not cause

a qubit transition if the ion is in |↓i|0i.
Squeezing of the motional state is accomplished

by applying an oscillating potential at twice the
motional frequency (2wr) to the radio-frequency
electrodes of the trap (23). This modulates the
confining potential for the ion, yielding the in-
teraction picture Hamiltonian

Ĥ ¼ iħ
g

2
â2 expð�iqÞ � â†2 expðiqÞ
h i

ð2Þ

(19), where ħ is the Planck constant divided by
2p, g is the parametric coupling strength, and q is
the phase of the parametric modulation. Apply-
ing this Hamiltonian for duration t implements
the unitary squeezing operator ŜðxÞ with r = gt.
Although electronic parametric modulation has
been used with single ions to squeeze a thermal
state of motion (24) and for phase-sensitive para-
metric amplification of highly displaced thermal
states (25), it has not previously been imple-
mented on pure quantum states. Optical forces
can also be used for parametric modulation (11),
but decoherence due to photon scattering and
higher-order nonlinearities in the optical field
have limited the achievable squeezing (11). Squeezed
mechanical oscillator states can also be prepared
using dissipative reservoir engineering (8, 12).
However, this is not a unitary squeezing oper-
ation, as is required for the amplification meth-
od described here.
We characterize our squeezing process using

motional sideband analysis to extract Fock state
populations (19) (Fig. 2). To characterize the
unitarity of our squeezing operations, we mea-
sure the ground-state population after squeezing

and anti-squeezing, h0jŜ†Ŝ j0i. For r < 2, this pop-
ulation is ~0.98, which is consistent with the mea-
sured value without squeezing and anti-squeezing
(r = 0). The population in n = 0 remains above
0.93 for r < 2.37 (±0.03), or 20.6 (±0.3) dB of
squeezing (19). The calibrated parametric coupling
strength is g = 2p × 50.2 (±0.2) kHz, equivalent
to a squeezing rate of 2.75 (±0.02) dB/ms.
We use this unitary squeezing interaction to

demonstrate amplification of harmonic oscil-
lator displacements (see Fig. 1). Displacements
are implemented by applying an oscillating
potential resonant with the motional mode (at
frequency wr) to an electrode of the ion trap
(19). All control fields are digitally synthesized
with the same reference clock, enabling stable
and deterministic control of the relative phases
between the displacement, squeezing, sideband,
and carrier interactions. At each stage of the
amplification process, we verify the Fock state
composition of the ion’s motional state using
sideband analysis (Fig. 2, A to C). The measured
gain for various values of the squeezing param-
eter closely follows the theoretically expected
exponential growth of the coherent state am-
plitude (Fig. 2E).
Using this amplification technique, we achieve

increased sensitivity when measuring displace-
ments much smaller than the zero-point fluctua-
tions. Tomap the final displacements af onto the
qubit states, we use a phase-sensitive red side-
band (PSRSB)method (26) (Fig. 3A),which reaches
the standard quantum limit for |af| ≪ 1 (19).
Here, a displacement of the motional ground
state results in a probability of measuring |↓i of
P↓ = ½[1 – C(|af|) cos f], where C(|af|) is the
signal contrast and f is the phase of a carrier
p/2 pulse, which follows the RSB p mapping
pulse. For |af| ≪ 1, C(af) ≈ 2|af|. In comparison,
simply measuring the qubit directly after the
RSB p pulse gives a signal P↓ º |af|

2. Without
amplification, af = ai and the PSRSB contrast is

C(|ai|). With amplification, the initial displace-
ment amplitude ai is ideally increased by a factor
of G and the PSRSB contrast becomes C(|Gai|).
This increase in contrast is shown in Fig. 3B,
where the presence of oscillations for the state
after amplification indicates that it has a well-
defined motional phase. The carrier phase de-
pendence in this figure is a feature of the PSRSB
method, not of the amplification protocol. Figure
3C highlights the phase-sensitive nature of the
amplification protocol by plotting the contrast C
of the PSRSB fringe against the squeezing phase
q for a fixed displacement. Maximum amplifica-
tion is achievedwhen the displacement is oriented
along the squeezed axis of the initial squeezed
state in motional phase space (see Fig. 1). Figure
3D shows the measured signal contrast as a
function of |ai| for various parametric drive
durations. For each displacement, the contrast
is defined as C ≡ P↓,max – P↓,min, where P↓,max

and P↓,min are the maximum and minimum, re-
spectively, of the fringes shown in Fig. 3B. The
uncertainty in measuring the contrast is sðCÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðP↓;maxÞ2 þ sðP↓;minÞ2
p

, where s(P↓,max(min))
2 is

the variance of the projection noise associated
with measuring P↓,max(min). The SNR for a dis-
placement measurement is then s(G) = C(Gai)/
s[C(Gai)]. For a given number of experiments,
amplification allows the SNR for a displacement
measurement to be improved in comparison to
the ideal PSRSBmeasurementwith no squeezing
(Fig. 3D, black solid line), giving a measurement
sensitivity enhancement of s(G)/s(G = 1). For
measurements where C ≲ 0.25, the contrast
varies linearly with |ai|, and the gain in contrast
C(Gai)/C(ai) sets a lower bound (which becomes
exact as |ai|→ 0) on themeasurement sensitivity
enhancement, because the projection noise de-
creases monotonically with increasing contrast.
Increasing the squeezing results in increased con-
trast for |af| ≪ 1, up to a squeezing time of
approximately 8 ms [corresponding to r = 2.54
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Fig. 2. Fock state population analysis.
(A to C) Histograms of Fock state populations
extracted by fitting to BSB Rabi oscillations.
Vertical bars are derived by fitting to an
unconstrained population distribution. Solid blue
lines are fits assuming parameterized functional
forms of the ideal Fock state populations, yielding
values of r, ai, and af (19). Insets show Wigner
function illustrations of the corresponding
motional states. (A) Initial squeezed motional
ground state with r = 2.26 (±0.02). (B) After
displacing this state by ai = 0.200 (±0.002).
(C) Final coherent state with amplitude af = 1.83
(±0.01), following the reversed squeezing
operation. The initial displacement is amplified
by G = af/ai = 9.17 (±0.09). (D) Squeezing
parameter r (black circles) as a function of the
parametric drive duration. The solid line is a linear
fit whose slope gives the parametric coupling
strength g. (E) Measured gain (black circles) as a
function of the squeezing parameter r. The solid
line is the theoretical gain G = exp(r). Error bars denote SD.
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(±0.03), and ideally 22.0 (±0.3) dB of squeez-
ing]. Here, we achieved a contrast gain of 7.3
(±0.3), corresponding to a factor of 53 (±4) re-
duction in the number of measurements required
to achieve a given SNR, equivalent to a 17.2
(±0.3) dB enhancement in measurement sen-
sitivity. For larger squeezing durations, degrada-
tion of the contrast due to background motional
heating and dephasing in our trap prevents a
further increase in gain. This is not a limitation
of the amplification process or our squeezing
method.We note that with amplification, we can
achieve a SNR of 1 for measuring a displace-
ment of one Bohr radius (~0.0529 nm, corre-
sponding to a ≈ 0.00467), less than the extent of
the ground-state vacuum fluctuations (a = 0.5)
by a factor of 107, in ~200 experiments.
We have implemented a fast unitary squeezing

interaction in a simple mechanical oscillator and
used it to amplify and detect coherent motional
displacements that are significantly smaller than
the quantum zero-point fluctuations. This ampli-
fication technique can enhance measurement
sensitivity in protocols that use phase-stable dis-
placements, such as photon-recoil spectroscopy
(26, 27), where the phase of momentum kicks

from photon absorption can be controlled by
modulating the photon source. Our method can
be extended to amplify displacements of un-
known frequency or phase, following the recent
proposal in (28). The parametricmodulation used
for squeezing can also be combined with a spin-
dependent force to enhance phonon-mediated
spin-spin interactions (28, 29), which are used
to create entanglement in quantum simulation
and quantum information processing experi-
ments. Our methods are also applicable to the
generation of exotic nonclassical motional states
and to continuous-variable quantum infor-
mation processing (30). Finally, we note that
the squeezing, displacement, spin-motion cou-
pling, and qubit control interactions used in
this work are all generated without lasers,
thereby eliminating spontaneous emission, sim-
plifying control of relative phases, and enabling
use with other charged particles lacking optical
transitions such as electrons, positrons, and
(anti-)protons (23).
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Fig. 3. Measurement sensitivity enhancement. (A) Pulse sequence for displacement sensing
protocol with PSRSB detection. (B) Population in |↓i as a function of the carrier p/2 pulse
phase. Blue inverted triangles, data with no squeezing; red circles, data with amplification.
Solid lines show sinusoidal fits to the data. (C) Contrast of the carrier phase scan, as shown
in (B), as a function of the squeezing phase q for a fixed displacement. (D) Contrast as a function
of the displacement amplitude |ai| for different initial squeezing pulse durations. Each data point
is calculated from ~104 experiments. The data shown in (B) and (C) have initial |ai| = 0.0578
(±0.0006) and a squeezing duration of t = 8 ms [nominally r = 2.54 (±0.03)]. The solid black
line in (D) is the maximum theoretical contrast without squeezing. Dashed lines in (C) and (D)
are derived from a numerical model that includes motional decoherence. (E) Measurement
sensitivity enhancement in the linear small-displacement regime as a function of the ideal
gain G = exp(gt). For each squeezing duration, the enhancement is determined by dividing
the slope of the contrast for C ≲ 0.25 [obtained by fitting a straight line to data points in (D)
with C ≲ 0.25] by the slope of the 0 dB black line, which represents the standard quantum
limit (19). Error bars denote SD.

RESEARCH | REPORT
on July 1, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/



